The Effect of Solutes on the Temperature of Miscibility Transitions in Multicomponent Membranes.
نویسندگان
چکیده
We address questions posed by experiments that show small-chain alcohols reduce the miscibility transition temperature when added to giant plasma membrane vesicles (GPMVs), but increase that temperature when added to giant unilamellar vesicles. In giant unilamellar vesicles the change in temperature displays a definite minimum, between decanol and tetradecanol, as a function of alcohol chain length; in GPMVs there is no such minimum. To emphasize the competition between internal entropies of the components and the interactions between them, we model the system as consisting of three different linear polymers. Two of them are the constituents of a liquid, one that can undergo a miscibility transition. To this liquid is added the third polymer component, which represents the short-chain alcohol. We show that, within Flory-Huggins theory, the addition of alcohol causes an increase or decrease of the miscibility transition temperature depending upon the competition of two effects. The first is the dilution of the interactions between the two components of the liquid caused by the introduction of the alcohol. This tends to lower the transition temperature. The second effect is the preferential partitioning of the alcohol into one phase of the liquid or the other. This tends to raise the transition temperature irrespective of which phase the alcohol prefers. This second effect is the smallest, and the decrease in transition temperature the largest, when the alcohol partitions equally between the two phases. Such equal partitioning occurs when the effect of the entropic excluded volume interactions (which cause the alcohol to prefer one phase) just balances the effect of the direct interactions, which cause it to prefer the other. These results allow us to make several predictions, and to propose an explanation for the different behavior of the transition temperature in GPMVs and giant unilamellar vesicles that results from the addition of alcohols.
منابع مشابه
Preparation and Investigation of Poly (N-isopropylacrylamide-acrylamide) Membranes in Temperature Responsive Drug Delivery
Objective(s) Physiological changes in the body may be utilized as potential triggers for controlled drug delivery. Based on these mechanisms, stimulus-responsive drug delivery has been developed. Materials and Methods In this study, a kind of poly (N-isopropylacrylamide-acrylamide) membrane was prepared by radical copolymerization. Changes in swelling ratios and diameters of the membrane wer...
متن کاملLive cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures.
Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in...
متن کاملEffect of Dehydration Temperature on the H2 Separation Potential of Hydroxy Sodalite Zeolite Membranes
The main goal of this work was to synthesize and evaluate the effect of dehydration temperature on the potential application of hydroxy sodalite zeolite membrane. Hydroxy sodalite zeolite membranes were synthesized via direct hydrothermal method onto a tubular alumina support without seeding in a hot air oven. The synthesized membranes were characterized by X-ray diffraction (XRD) and scanning ...
متن کاملStabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms.
Many organisms accumulate compatible solutes under environmental stress conditions. Cyanobacteria accumulate compatible solutes in response to increased external salinity, with tolerance increasing from Suc (sucrose) or trehalose to 2-O-(alpha-D-glucopyranosyl)-glycerol and glycinebetaine accumulating species. It is not clear how these different solutes influence salt tolerance. One possible ex...
متن کاملEffect of Ethylene Oxide Functional Groups in PEBA-CNT Membranes on CO2/CH4 Mixed Gas Separation
Poly (ether-block-amide) /poly (ethylene glycol)/ carbon nanotubes mixed matrix membranes have been successfully fabricated using solvent evaporation method to determine the effect of ethylene oxide groups on the performance of produced membranes. The effects of CNTs (2-8 wt%) and PEG (up to 50 wt%)were investigated in both single and mixed gas test setup in different temperature and pressure. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 113 8 شماره
صفحات -
تاریخ انتشار 2017